Tetraethylammoniumiodid–Germaniumtetraiodid (1/2), eine Struktur mit einem von acht Iodatomen koordinierten Iodidion

VON ULRICH MÜLLER UND VOLKER KRUG

Fachbereich Chemie der Universität Marburg, Hans-Meerwein-Straße, D-3550 Marburg, Bundesrepublik Deutschland

(Eingegangen am 20. März 1989; angenommen am 11. Juli 1989)

Abstract. $[N(C_2H_5)_4]I.2GeI_4$, $M_r = 1417.62$, monoclinic, C2/c, a = 17.953 (2), b = 9.990 (2), c = 17.509 (2) Å, $\beta = 108.87$ (7)°, V = 2971 Å³, Z = 4, $D_x = 3.17$ g cm⁻³, Mo K α , $\lambda = 0.7107$ Å, $\mu = 107.3$ cm⁻¹, F(000) = 2464, T = 293 K, R = 0.055, wR = 0.050 for 1564 unique reflexions $[F > 3\sigma(F)]$. The I⁻ ion is surrounded by eight I atoms from eight tetrahedral GeI₄ molecules, the coordination polyhedron being a prism with a rhombus as the base. The I⁻ ...I contact distances range from 3.66 to 3.79 Å and suggest some kind of interaction. The NEt₄⁺ ions occupy crystallographic inversion centres and thus are statistically disordered in two orientations.

Einleitung. In Iodverbindungen beobachtet man häufig relativ kurze I···I-Kontaktabstände zwischen Atomen, die zu verschiedenen Molekülen gehören. Besonders augenfällig ist dies bei den zahlreichen Polyiodiden, die als Assoziationsprodukte von I⁻-Ionen und I₂-Molekülen aufgefaßt werden können und bei denen I—I-Abstände im Bereich von der Bindungslänge im Iod-Molekül (2,66 Å) bis zu einem angenommenen van der Waals-Abstand von 4,30 Å auftreten (Tebbe, 1977). Kontaktabstände in diesem Bereich haben wir jetzt auch zwischen I⁻-Ionen und GeI₄-Molekülen gefunden.

Experimentelles. In der Absicht, NEt₄[GeSI₃] zu synthetisieren, haben wir 300 mg (0,73 mmol) NEt₄-[GeSCl₃]. $^{1}{_{2}}$ CCl₄ (Müller & Krug, 1985) in 15 ml wasserfreiem CH₂Cl₂ gelöst und ISiMe₃ im Überschuß (1 ml, 7,35 mmol) zugetropft. Die Lösung färbte sich dunkelbraun und über Nacht entstanden dunkelbraune Kristalle, die abfiltriert und im Vakuum getrocknet wurden. Ausbeute: 510 mg (98%). Das Infrarotspektrum zeigt zwischen 200 und 350 cm⁻¹ nur die F_2 -Schwingung von GeI₄ als scharfe Absorptionsbande bei 256 cm⁻¹; wegen der fehlenden Aufspaltung der Bande (keine Aufhebung der dreifachen Entartung) ist auf eine kaum verzerrte Tetraederstruktur des GeI₄-Moleküls zu schließen. Einkristall (0,11 × 0,17 × 0,28 mm) in Quarzglaska-

pillare. Diffraktometer Enraf-Nonius CAD-4. Graphit-Monochromator. Gitterparameter aus 14 Reflexen im Bereich $14 < \theta < 20^{\circ}$. Meßbereich $1 < \theta$ $< 22^{\circ}, \ \omega$ -scan, $0 \le h \le 18, \ 0 \le k \le 10, \ -18 \le l \le 18.$ Intensitätsschwankungen der Kontrollreflexe 204 und 222 < 1,5%. 2045 Reflexe, davon 1889 unabhängig ($R_{int} = 0,062$), 325 Reflexe mit $F < 3\sigma(F)$ als unbeobachtet gewertet. Absorptionskorrektur des vermessenen Kristalls, Transmissionsfaktoren 0,14 bis 0,30. Strukturaufklärung durch Patterson-Synthese, Verfeinerung durch Minimieren von $\sum w(|F_o| - |F_c|)^2 \quad \text{mit} \quad w = 1/\sigma^2(F), \quad (\Delta/\sigma)_{\text{max}} = 0.1.$ Extinktionskorrektur. H-Atome Keine nicht berücksichtigt. Fehlordnung des NEt₄⁺-Ions durch Verwendung gespaltener Atomlagen berücksichtigt [C(1) und C(2) bzw. C(4) und C(5) mit je 50% Aufenthaltswahrscheinlichkeit]. Atomformfaktoren: Cromer & Mann (1968); f', f": Cromer & Liberman (1970). Rechenprogramme: CADLP (Müller, 1971), SHELX76 (Sheldrick, 1976). R = 0.055, wR = 0.050, Abschließende Restelektronendichte S = 2.2. zwischen -1.4 und $1.4 \text{ e} \text{ Å}^{-3}$. Die erhaltenen Atomparameter sind in Tabelle 1 zusammengestellt.*

Diskussion. Die Auswertung der interatomaren Abstände (Tabelle 2) zeigt einen Aufbau aus NEt₄⁺-Ionen, I⁻-Ionen und GeI₄-Molekülen. Die I⁻-Ionen befinden sich auf den kristallographischen zweizähligen Drehachsen. Jedes davon ist von acht Iodatomen aus acht verschiedenen GeI₄-Molekülen umgeben (Fig. 1), wobei auffällig kurze Kontaktabstände von 3,660 (2) bis 3,792 (2) Å auftreten. Nach einer neueren Untersuchung von Nyburg & Faerman (1985) ist ein Iodatom, das an ein Kohlenstoffatom gebunden ist, nicht sphärisch, sondern hat einen van der Waals-Radius von 1,76 Å in Richtung der verlängerten C-I-Achse und von 2,13 Å senkrecht

^{*} Die Listen der Strukturfaktoren und der anisotropen Temperaturfaktoren sind bei dem British Library Document Supply Centre (Supplementary Publication No. SUP 52418: 12 pp.) hinterlegt. Kopien sind erhältlich durch: The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

^{© 1990} International Union of Crystallography

Tabelle 1. Atomkoordinaten und Parameter U (Å²) für den isotropen (C-Atome) bzw. äquivalenten isotropen Temperaturfaktor (Hamilton, 1959) $exp(-8\pi^2 Usin^2\theta/\lambda^2)$

	x	у	z	U bzw. U _{åo}
Ge	0,1301 (1)	0,2277 (2)	0,1245 (1)	0.0482 (6)
I(1)	0	0,7224 (2)	0,25	0,0457 (5)
I(2)	0,0746 (1)	0,4205 (2)	0,1811 (1)	0.0760 (6)
I(3)	0,0694 (1)	0,0137 (1)	0,1526 (1)	0,0794 (6)
I(4)	0,09774 (8)	0,2602 (2)	-0,02551 (7)	0,0717 (5)
I(5)	0,27719 (8)	0,2170 (2)	0,1891 (1)	0,0831 (6)
N	0,25	0,25	0,5	0,055 (8)
C(1)*	0,296 (3)	0,285 (5)	0,441 (3)	0.08 (1)
C(2)*	0,179 (3)	0,351 (5)	0,467 (3)	0,08 (1)
C(3)	0,377 (2)	0,188 (4)	0,473 (2)	0.15 (1)
C(4)*	0,212 (3)	0,104 (5)	0,467 (3)	0,09 (1)
C(5)*	0,287 (3)	0,227 (5)	0,584 (3)	0.10 (2)
C(6)	0,172 (2)	0,107 (3)	0,381 (2)	0,14 (1)

* Besetzungswahrscheinlichkeit 0,5.

Tabelle 2. Interatomare Abstände (Å) und Bindungswinkel (°) für NEt₄I.2GeI₄

Bezeichnung symmetrieäquivalenter Positionen: (i) x, y + 1, z; (ii) x, 1-y, z+0.5; (iii) x-0.5, y+0.5, z; (iv) 0.5-x, 0.5-y, 1-z; (v) -x, y, 0.5-z; (vi) -x, 1-y, -z; (vii) 0.5-x, 0.5+y, 0.5-z. Die Atomlagen C(1), C(2), C(4) und C(5) haben eine Besetzungswahrscheinlichkeit von 0.5.

Ge—I(2)	2,514 (2)	I(2) - Ge - I(3)	108,8 (1)
Ge-I(3)	2,520 (2)	I(2) - Ge - I(4)	109.0 (1)
Ge-I(4)	2,520 (2)	I(2) - Ge - I(5)	110,3 (1)
Ge—I(5)	2,517 (2)	I(3)—Ge—I(4)	110.2 (1)
I(1)…I(2)	3,660 (2)	I(3) - Ge - I(5)	109,4 (1)
$I(1)\cdots I(3^i)$	3,782 (2)	I(4)—Ge—I(5)	109,2 (1)
I(1)…I(4 ⁱⁱ)	3,755 (2)	Ge-I(2)…I(1)	174,4 (1)
I(1)…I(5 ⁱⁱⁱ)	3,792 (2)	Ge^{i} —I(3 ⁱ)…I(1)	165,3 (1)
N—C(1)	1,56 (5)	Ge^{ii} —I(4 ⁱⁱ)…I(1)	165,8 (1)
N-C(2)	1,58 (5)	Ge^{iii} —I(5 ⁱⁱⁱ)…I(1)	169,8 (1)
N-C(4)	1,63 (5)	C(1) - N - C(2)	99 (3)
N—C(5)	1,42 (5)	C(1) - N - C(4)	103 (3)
C(1)—C(3)	1,68 (6)	C(1) - N - C(5)	123 (3)
C(2)—C(3 ^{iv})	1,72 (5)	C(2) - N - C(4)	104 (2)
C(4)—C(6)	1,44 (5)	C(2) - N - C(5)	122 (3)
C(5)—C(6 ^{iv})	1,84 (6)	C(4)—N—C(5)	103 (2)
I(2)…I(1)…I(2 [*])	69,0 (1)	I(3)…I(1)…I(4 ⁱⁱ)	109.0 (1)
$I(2)\cdots I(1)\cdots I(3^{v})$	172,5 (1)	$I(3) \cdots I(1) \cdots I(4^{v_1})$	66.6 (1)
$I(2)\cdots I(1)\cdots I(3)$	106,0 (1)	$I(3) \cdots I(1) \cdots I(5^{iii})$	110,8 (1)
I(2)…I(1)…I(4 ⁱⁱ)	106,6 (1)	$I(3) \cdots I(1) \cdots I(5^{vii})$	70,5 (1)
I(2)…I(1)…I(4 ^{vi})	77,9 (1)	$I(4^{i})\cdots I(1)\cdots I(4^{vi})$	174,7 (1)
I(2)…I(1)…I(5 ⁱⁱⁱ)	121,1 (1)	$I(4^{i}) \cdots I(1) \cdots I(5^{iii})$	112,9 (1)
I(2)…I(1)…I(5 ^{vii})) 67,4 (1)	$I(4^{i})\cdots I(1)\cdots I(5^{vii})$	67,2 (1)
I(3)…I(1)…I(3 [•])	79,4 (1)	$I(5^{ii})\cdots I(1)\cdots I(5^{vii})$	178,4 (1)

dazu. Nimmt man die Gültigkeit dieser Werte auch für an Germanium gebundene Iodatome an, so erhält man unter Berücksichtigung der Ge—I···I⁻-Winkel von 165 bis 176° einen van der Waals-Radius von 1,76 bis 1,78 Å. Der Ionenradius eines I⁻-Ions beträgt nach Shannon (1976) 2,20 Å bei Koordinationszahl 6. Legt man diesen Wert zugrunde und berücksichtigt man, daß bei Koordinationszahl 8 der effektive ionenradius etwas größer sein sollte, so wären somit I⁻···I-Kontaktabstände von mindestens 3,96 Å zu erwarten. Kurze I···I-Kontakte sind außer bei den Polyiodiden (Tebbe, 1977) auch bei vielen anderen Iodverbindungen beobachtet worden. Im NI_4^{+} .I⁻.NH₃ sind zum Beispiel die I⁻-Ionen von drei I-Atomen aus den NI_4^{+} -Ionen im Abstand von 3,088 (2) Å umgeben (Plewa & Tebbe, 1981) und im PI_4^{+} .AlI₄⁻ finden sich I···I-Kontakte zwischen Kationen und Anionen von 3,386 (4) Å (Pohl, 1983). Zur Interpretation solcher Kontakte als Donor-Akzeptor-Wechselwirkung siehe bei Hassel & Rømming (1967).

Das Koordinationspolyeder um das Iodidion entspricht etwa einem Prisma mit rautenförmiger Basisfläche. Die Prismenkanten (I···I-Abstände zwischen I-Atomen verschiedener GeI₄-Moleküle) sind zwischen 4,13 und 4,84 Å lang, die Diagonalen der Basisraute sind 4,092 (2) und 6,287 (2) Å lang. Das Koordinationspolyeder kann auch als Würfel aufgefaßt werden, der zwischen zwei gegenüberliegenden Kanten gestaucht wurde.

Im Einklang mit dem oben erwähnten IRspektroskopischen Befund weicht die Gestalt des GeI₄-Moleküls nur sehr wenig von der idealen Tetraedersymmetrie ab (vgl. Tabelle 2). Der mittlere Ge—I-Abstand von 2,518 Å entspricht dem durch Elektronenbeugung an gasförmigem GeI₄ gefundenen Wert [2,50 (2) Å (Lister & Sutton, 1941); 2,47 (3) Å (Hveding & Strøme, 1937)]. Vom GeI₄ ist bekannt, daß es mit organischen, stickstoffhaltigen Basen zahlreiche Molekülkomplexe bildet, bei denen möglicherweise die N-Atome an die Iodatome angelagert sind (Gmelin, 1958).

Die Tetraethylammonium-Ionen sind statistisch in zwei Orientierungen fehlgeordnet, so daß sie im Mittel die kristallographische Symmetrie $\overline{1}$ ihrer Punktlage erfüllen. Von der Fehlordnung sind die

Fig. 1. Ausschnitt aus der Kristallstruktur von NEt₄I.2GeI₄ in Projektion längs der *b*-Achse. Von den beiden Lagen des Fehlgeordneten NEt₄⁺-Ions ist eine gestrichelt gezeichnet. Punktiert: I⁻…I-Kontakte.^v Zahlenwerte = 100fache der *y*-Koordinaten.

direkt an das N-Atom gebundenen C-Atome betroffen, während die terminalen C-Atom beiden Orientierungen gemeinsam sind (Fig. 1). Diese Art Fehlordnung wird bei Tetraethylammonium-Salzen häufig beobachtet (z.B. Krug, Koellner & Müller, 1988).

Wir danken dem Fonds der Chemischen Industrie für die Unterstützung dieser Arbeit.

Literatur

CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891-1897.

CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321-324.

GMELIN, L. (1958). Handbuch der anorganischen Chemie Germanium, Ergänzungsband, S. 536. Weinheim: Verlag Chemie.

HAMILTON, W. C. (1959). Acta Cryst. 12, 609-610.

HASSEL, O. & RØMMING, C. (1967). Acta Chem. Scand. 21, 2659–2662.

Acta Cryst. (1990). C46, 525-527

- HveDing, J. A. & Strøme, L. C. (1937). *Tidsskr. Kjemi Bergves.* 17, 81–83.
- KRUG, V., KOELLNER, G. & MÜLLER, U. (1988). Z. Naturforsch. Teil B, 43, 1501–1509.
- LISTER, M. W. & SUTTON, L. E. (1941). Trans. Faraday Soc. 37, 393-406.
- MÜLLER, U. (1971). CADLP. Programm zur Auswertung und Lp-Korrektur von Diffraktometerdaten. Univ. Marburg, Bundesrepublik Deutschland.
- MÜLLER, U. & KRUG, V. (1985). Z. Naturforsch. Teil B, 40, 1015-1019.
- NYBURG, S. C. & FAERMAN, C. H. (1985). Acta Cryst. B41, 274–279.
- PLEWA, M. & TEBBE, K.-F. (1981). Z. Anorg. Allg. Chem. 477, 7-20.
- POHL, S. (1983). Z. Anorg. Allg. Chem. 498, 15-19.
- SHANNON, R. D. (1976). Acta Cryst. A32, 751-758.
- SHELDRICK, G. M. (1976). SHELX76. Programm für die Kristallstrukturbestimmung. Univ. Cambridge, England.
- TEBBE, K.-F. (1977). Homoatomic Rings, Chains and Macromolecules of Main Group Elements, herausgegeben von A. L. RHEINGOLD, S. 551-606. Amsterdam, Oxford, New York: Elsevier.

Structure of Yttrium Nitrate Monohydrate

BY BÉLA RIBÁR AND PAVLE RADIVOJEVIĆ

Institute of Physics, Faculty of Sciences, Ilije Djuričića 4, 21000 Novi Sad, Yugoslavia

AND GYULA ARGAY AND ALAJOS KÁLMÁN

Central Research Institute of Chemistry, Hungarian Academy of Sciences, Budapest, PO Box 17, H-1525 Hungary

(Received 11 April 1989; accepted 21 July 1989)

Abstract. Y(NO₃)₃.H₂O, $M_r = 292.93$, triclinic, $P\overline{1}$, a = 7.388 (1), b = 7.889 (1), c = 8.204 (2) Å, $\alpha = 64.43$ (2), $\beta = 70.90$ (1), $\gamma = 62.74$ (1)°, V = 378.4 (2) Å³, Z = 2, $D_x = 2.570$ g cm⁻³, λ (Mo $K\alpha$) = 0.71069 Å, $\mu = 78.02$ cm⁻¹, F(000) = 284, T = 293 (1) K, R = 0.070 for 1613 unique observed reflections. Eight nitrate O atoms and a water molecule produce a nine-coordinated Y atom. The coordination polyhedra are linked by four common nitrate oxygens, thus forming continuous chains parallel to the *b* axis. Water molecules form hydrogen bonds with two nitrate O atoms in adjacent chains.

Introduction. The title compound was prepared by thermal decomposition of crystals of $Y(NO_3)_3.6H_2O$ (Merck, Art. 12516) at 443 (1) K. The structure of $Y(NO_3)_3.6H_2O$ was solved by Ribár, Milinski, Budovalčev & Krstanović (1980) and the structure of $Y(NO_3)_3.5H_2O$ by Eriksson (1982). Differential

0108-2701/90/040525-03\$03.00

thermal analysis of $Y(NO_3)_3.6H_2O$ within the temperature range from 293 to 630 K shows five endothermic peaks at 323, 355, 378, 443 and 533 K. The first peak corresponds to melting; the second peak corresponds to formation of a complex salt $Y_2(NO_3)_6.7H_2O$ (Radivojević, Milinski, Ribár & Lazar, 1984); the third to $Y(NO_3)_3.3H_2O$ (Ribár, Radivojević, Argay & Kálmán, 1988); the fourth to the title compound; the fifth to $Y(NO_3)_3$. Single crystals of the title compound have been grown by keeping $Y(NO_3)_3.6H_2O$ for two weeks at 443 K. The hygroscopic crystals obtained were sealed into Lindemann-glass capillary tubes.

Experimental. A crystal plate $ca \ 0.70 \times 0.20 \times 0.10$ mm was measured on an Enraf-Nonius CAD-4 diffractometer equipped with a graphite monochromator. Scan range $0 < \theta < 30^{\circ}$, $\omega - 2\theta$ scan, h - 9 to 10, k - 9 to 10, l 0 to 11, no systematic absences. Cell parameters by least-squares fit for 25 reflections

© 1990 International Union of Crystallography